Third Semester B.E. Degree Examination, December 2010 **Network Analysis**

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions.

Obtain the current source equivalent of a practical voltage source. 1

(05 Marks)

In the network shown in Fig.Q1(b), find the power delivered by the source, using the nodal (07 Marks) analysis.

- Using mesh current analysis, find the current through the capacitor shown in Fig.Q1(c). (08 Marks)
- State and prove the maximum power transfer theorem, for ac networks. (06 Marks) 2 a.
 - Find the value of R_L shown in Fig.Q2(b) at which maximum power is transferred across ab. What is the maximum power transferred? (07 Marks)

- Find the current through the 6Ω resistor shown in Fig.Q2(c), using the superposition (07 Marks) theorem.
- Obtain the Thevenin's equivalent at terminals a-b shown in Fig.Q3(a). 3

(10 Marks)

State the reciprocity theorem.

(03 Marks)

- Using the Millman's theorem, find the current through the 10Ω resistor shown in Fig.Q3(c). (07 Marks)
- Define the following with respect to a graph: 4 a.
 - i) Loop
- ii) Cut set
- iii) Tree
- iv) Co-tree

(06 Marks)

For the graph shown in Fig.Q4(b), draw any two trees and corresponding co-trees. (05 Marks)

- 4 c. If the node-brand reduced incidence matrix is $[A] = \begin{bmatrix} -1 & 1 & 0 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -1 & -1 \end{bmatrix}$, draw the graph. (04 Marks)
 - d. Obtain the dual of the network shown in Fig.Q4(d).

(05 Marks)

- 5 a. Prove that a parallel R-L and R-C circuit can resonate at all frequencies. Derive the condition. (07 Marks)
 - b. In a series RLC circuit, $R = 2 \Omega$, L = 2.0 mtr, $C = 10 \mu F$. Find the resonant frequency, Q factor, bandwidth and half power frequencies. (06 Marks)
 - c. Determine C for the network shown in Fig.Q5(c) for the network to resonate. (07 Marks)

a. In the circuit shown in Fig.Q6(a), find the initial current through the inductor, i_L(t) and the time when the current in the inductor reduces to half its original value. The switch is opened at t = 0. (08 Marks)

- b. In the network shown in Fig.Q6(b), obtain the expression for the voltage across the capacitor, if the switch is closed at t = 0. (12 Marks)
- 7 a. For the network shown in Fig.Q7(a), draw the frequency domain equivalent network and solve for $V_0(P)$ using Laplace transfers. (10 Marks)

- b. In a series RL circuit an exponential voltage $V = 50 e^{-100 t}$ (V) is applied at t = 0. $R = 10 \Omega$ and L = 0.2 H. Evaluate the current using the Laplace transforms. (10 Marks)
- 8 a. Obtain the z-parameters of a two port network in terms of its h-parameters. (07 Marks)
 - b. Find the Y parameters of the network shown in Fig.Q8(b). (07 Marks)
 - c. Obtain the ABCD parameters of two networks connected in cascade. (06 Marks)

* * * * *